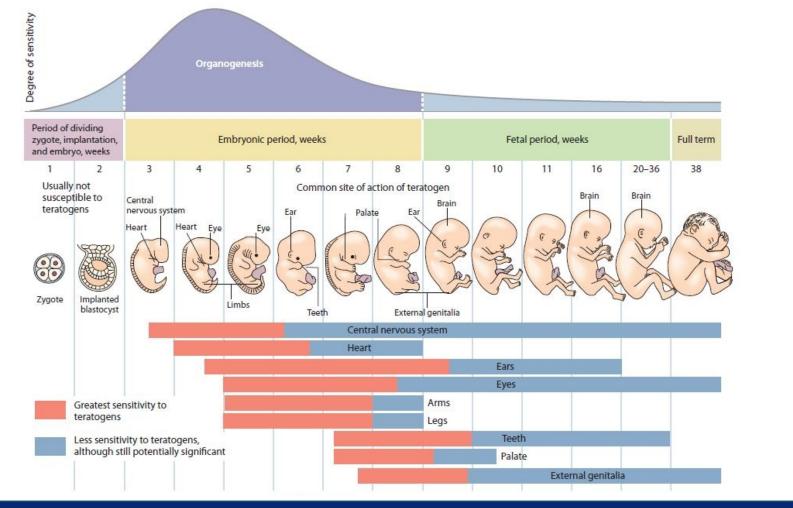
Characterizing novel industrial chemical exposures during critical periods of development

Opportunities within the Environmental influences on Child Health Outcomes (ECHO) Program

Jessie P. Buckley, PhD, MPH

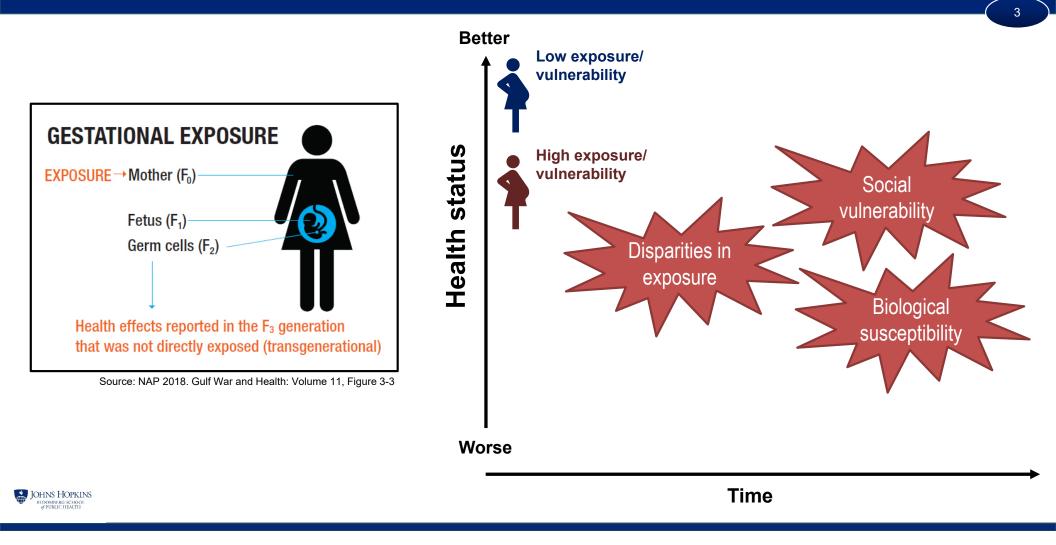
Assistant Professor, Environmental Health and Engineering & Epidemiology Johns Hopkins University Bloomberg School of Public Health

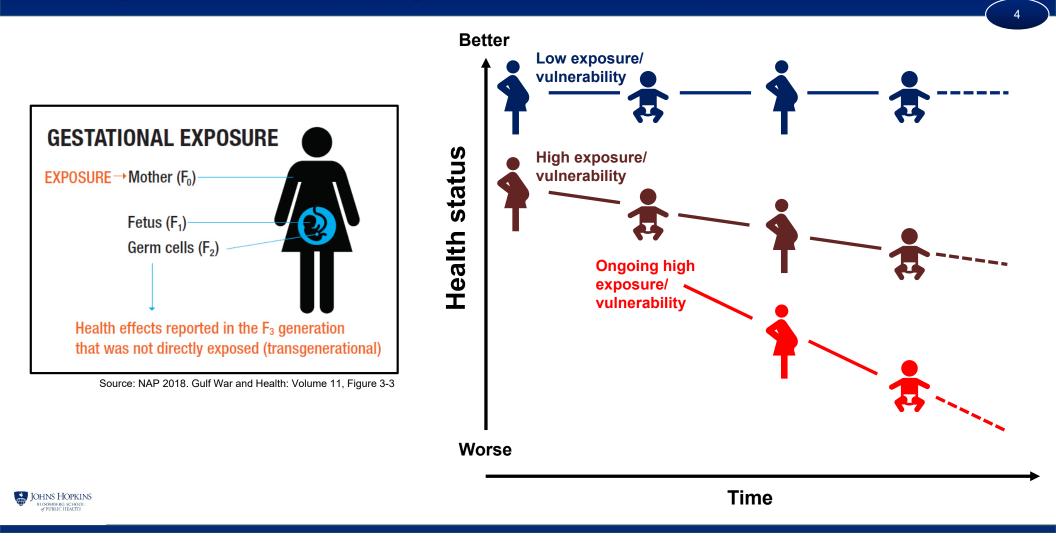
October 29, 2020 CHE Partnership Webinar


. .

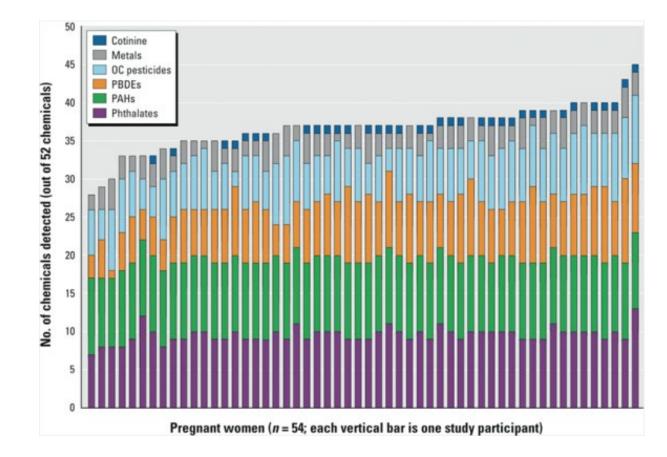
Critical periods of development

JOHNS HOPKINS


OOMBERG SCHOOL of PUBLIC HEALTH


2

Santrock, 2009; pg. 74


Transgenerational propagation of health disparities

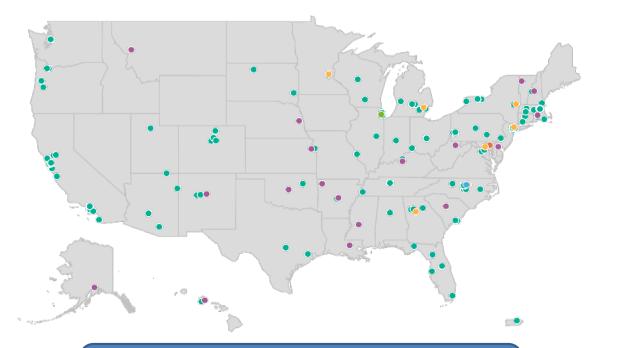
Transgenerational propagation of health disparities

Chemicals are found in virtually all U.S. pregnant women

Woodruff et al. EHP 2011

~350 chemicals biomonitored in the U.S.

>40,000 chemicals approved for use in the U.S.


(~8,000 high production volume)

>9.5 Trillion pounds of chemicals per year in the U.S. (~30,000 lbs/person) Key Gap

Only a fraction of chemicals have been measured in pregnant women or children

Picture source: www.othot.com

Environmental influences on Child Health Outcomes (ECHO) Program

>55,000 children from 71

longitudinal cohorts across the US

Children's race/ethnicity

- 45% Non-Hispanic White
- 25% Hispanic
- 13% Non-Hispanic Black
- 11% Non-Hispanic Other Race
- 6% Unknown/not reported/other

ECHO Environmental influences on Child Health Outcomes

A program supported by the NIH

Identify novel chemicals of importance to children's health

Identifying and prioritizing candidate chemicals

Review

A Section 508-conformant HTML version of this article is available at https://doi.org/10.1289/EHP5133.

Identifying and Prioritizing Chemicals with Uncertain Burden of Exposure: Opportunities for Biomonitoring and Health-Related Research

Edo D. Pellizzari,¹ Tracey J. Woodruff,² Rebecca R. Boyles,³ Kurunthachalam Kannan,⁴ Paloma I. Beamer,⁵ Jessie P. Buckley,⁶ Aolin Wang,² Yeyi Zhu,^{7,8} and Deborah H. Bennett⁹ (Environmental influences on Child Health Outcomes)

¹Fellow Program, RTI International, Research Triangle Park, North Carolina, USA

²Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA

³Bioinformatics and Data Science, RTI International, Research Triangle Park, North Carolina, USA

⁴Wadsworth Center, New York State Department of Health, Albany, New York, USA

⁵Department of Community, Environment and Policy, Zuckerman College of Public Health, University of Arizona, Tucson, Arizona, USA

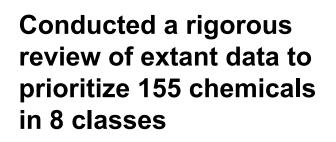
⁶Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Heath, Johns Hopkins University,

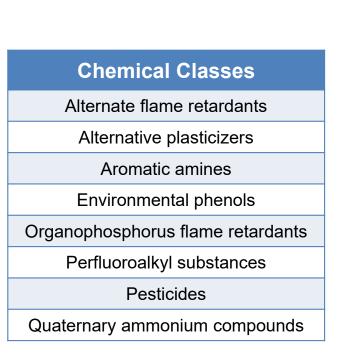
Baltimore, Maryland, USA

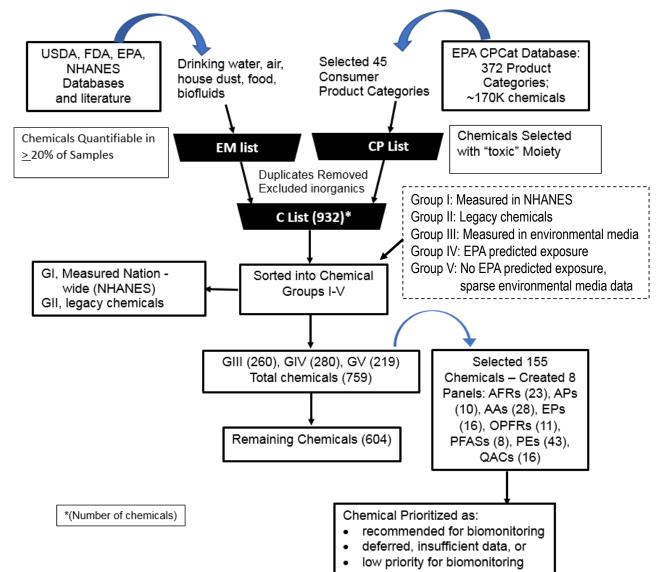
⁷Northern California Division of Research, Kaiser Permanente, Oakland, California, USA

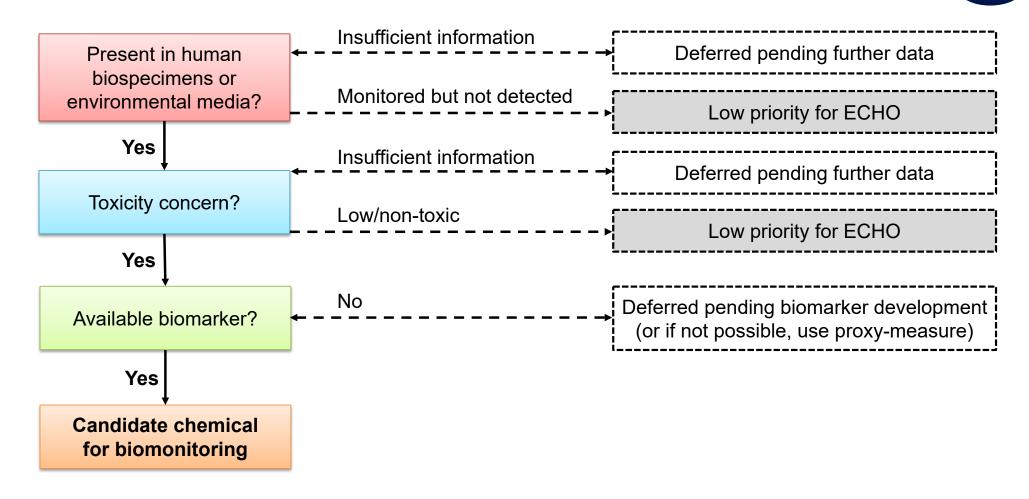
⁸Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA

⁹Department of Public Health Sciences, University of California, Davis, Davis, California, USA

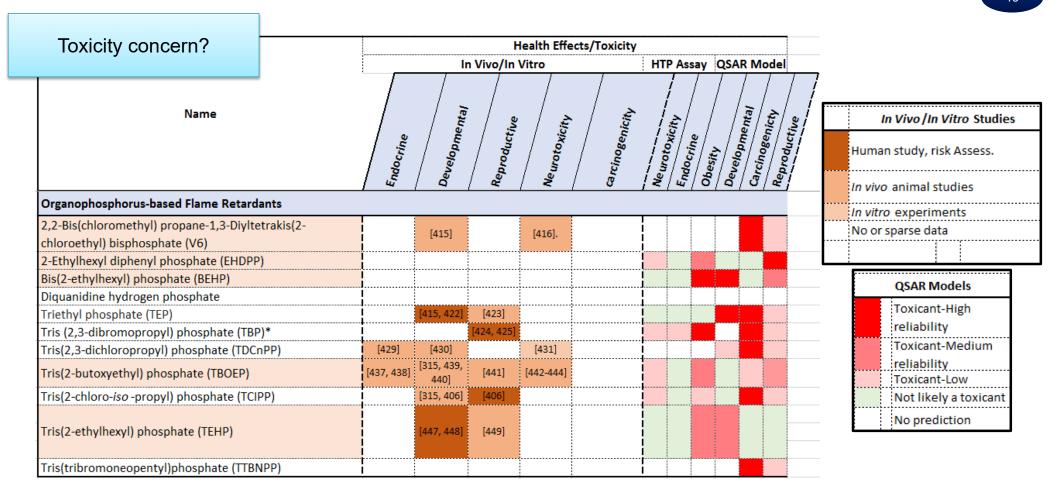

BACKGROUND: The National Institutes of Health's Environmental influences on Child Health Outcomes (ECHO) initiative aims to understand the impact of environmental factors on childhood disease. Over 40,000 chemicals are approved for commercial use. The challenge is to prioritize chemicals for biomonitoring that may present health risk concerns.


OBJECTIVES: Our aim was to prioritize chemicals that may elicit child health effects of interest to ECHO but that have not been biomonitored nation-wide and to identify gaps needing additional research.


METHODS: We searched databases and the literature for chemicals in environmental media and in consumer products that were potentially toxic. We selected chemicals that were not measured in the National Health and Nutrition Examination Survey. From over 700 chemicals, we chose 155 chemicals and created eight chemical panels. For each chemical, we compiled biomonitoring and toxicity data, U.S. Environmental Protection Agency exposure predictions, and annual production usage. We also applied predictive modeling to estimate toxicity. Using these data, we recommended


Pellizzari et al. EHP 2019

Criteria for recommending chemical biomonitoring in ECHO



Example: organophosphorus-based flame retardants

Present in human biospecimens or environmental media?				wironmental	Media	
Name		Dermal Contact	Biofiuids/hair/o	Air, Indoor D _{ust}	Food, Wate _r	
2,2-Bis(chloromethyl) propane-1,3-Diyltetra	is(2-		[142]	[29, 404, 405],		
chloroethyl) bisphosphate (V6)						i
2-Ethylhexyl diphenyl phosphate (EHDPP)			[407-409]	[408, 410-413]	[27, 414]	
Bis(2-ethylhexyl) phosphate (BEHP)			[417].	[140, 143]	[418]	
Diquanidine hydrogen phosphate						
Triethyl phosphate (TEP)				[419-421]	[28]	
Tris (2,3-dibromopropyl) phosphate (TBP)*			[424]	[413]		
Tris(2,3-dichloropropyl) phosphate (TDCnPF		T	[426]	[419, 427]	[428]	
Tris(2-butoxyethyl) phosphate (TBOEP)			[407, 432- 434]	[24, 155, 315, 407, 411, 419, 435, 436]	[27, 28]	
Tris(2-chloro- <i>iso</i> -propyl) phosphate (TCIPP)			[108, 445]	[88, 89, 155, 315, 404, 407, 410, 412]	[28]	
Tris(2-ethylhexyl) phosphate (TEHP)			[433]	[420, 425, 446]	[27]	
Tris(tribromoneopentyl)phosphate (TTBNPF					[450, 451]	

Quantified in media/ biofluids; qual. id
in biofluids
Qualitative id in media or dermal
contact
No or sparse data

Example: organophosphorus-based flame retardants

Example: organophosphorus-based flame retardants

Available biomarker?		Bion	narkers	
Name	Plasma/Serim	Hair/fingernaite	Urine	Breast Milk
Organophosphorus-based Flame Retardants		-		
2,2-Bis(chloromethyl) propane-1,3-Diyltetrakis(2- chloroethyl) bisphosphate (V6)		[142]	[142]	
2-Ethylhexyl diphenyl phosphate (EHDPP)		[409]	[407]	
Bis(2-ethylhexyl) phosphate (BEHP)			[417].	
Diquanidine hydrogen phosphate				
Triethyl phosphate (TEP)	Ī			
Tris (2,3-dibromopropyl) phosphate (TBP)*	I		[424]	
Tris(2,3-dichloropropyl) phosphate (TDCnPP)		[426]		
Tris(2-butoxyethyl) phosphate (TBOEP)		[409]	[407, 432- 434, 445]	[433, 445]
Tris(2-chloro- <i>iso</i> -propyl) phosphate (TCIPP)			[108]	[445]
Tris(2-ethylhexyl) phosphate (TEHP)		[409]	[433]	[433]
Tris(tribromoneopentyl)phosphate (TTBNPP)			1	

Parent or metabolite
No or sparse data

Recommended biomonitoring of novel chemicals in ECHO

Panel name	# Chemicals	# Recommended for biomonitoring	# Deferred	# Low priority for biomonitoring
Alternate flame retardants	23	4	16	3
Alternative plasticizers	10	2	5	3
Aromatic amines	28	3	25	0
Environmental phenols	16	6	9	1
Organophosphorus flame retardants	11	5	5	1
Perfluoroalkyl substances	8	4	4	0
Pesticides	43	12	28	3
Quaternary ammonium compounds	16	0	16	0
Total:	155	36	108	11

Assessing novel chemical exposures in ECHO

Develop and demonstrate feasibility of a method for multiple chemical extraction and measurement

102 urinary biomarkers in multi-class assay

Alternative Flame Retardant

Melamine

E

Aromatic Amines	
2-Methylaniline	
2-Methoxyaniline	
3,4-Diclhoroaniline	
2,4-Diaminotoluene	
4,4'-Diaminodiphenylmethane	

Organophosphorus-based flame retardants

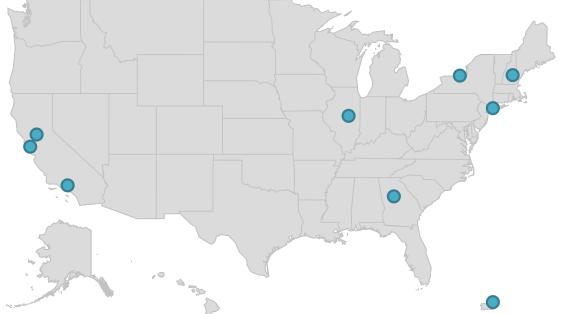
indine relatuants				
2,2-Bis(chloromethyl) propane-1,3-diyltetrakis(2-				
chloroethyl) bisphosphate				
2-Ethylhexyl diphenyl phosphate				
Bis(2-ethylhexyl) phosphate				
Tris(2-ethylhexyl) phosphate				
Bis(2-butoxyethyl) phosphate				
Tris(2-butoxyethyl) phosphate				
Triethyl phosphate				
Bis(2-methylphenyl) phosphate				
Cresyl diphenyl phosphate				
Dibutyl phosphate				
Diphenyl phosphate				
Di-isobutyl phosphate				
Tri-iso-butyl phosphate				
Tri-isopropyl phosphate				
Trimethyl phosphate				
Trimethylphenyl phosphate				
Tri-n-butyl phosphate				
Triphenyl phosphate				
Tris(2-chloroethyl) phosphate				

Environmental Phenols
Bisphenol A diglycidyl ether
Bisphenol AF
Bisphenol B
3,3',5,5'-Tetrabromobisphenol A
2,2',6,6'-Tetrachlorobispheol A
3.3'.5-Trichlorobisphenol A
I-n-Nonylphenol
Bisphenol A (2,3-dihydroxypropyl) glycidyl ether
Bisphenol A bis(2,3-dihydroxypropyl) glycidyl ether
Bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether
Bisphenol A bis(3-chloro-2-hydroxypropyl) glycidyl ether
I-n-Octylphenol
1,4'-(1,4-Phenylenediisopropylidene)bisphenol
1,4'-(1-Phenylethylidene)bisphenol
1,4'-Cyclo-hexylidenebisphenol
1,4'-di-Hydroxydiphenylmethane
1,4'-Sulfonyldiphenol (Bisphenol S)
bis(4-Hydroxyphenyl)propane
2,4,5-Trichlorophenol
2,3,4,5-Tetrachlorophenol
2,3,4,6-Tetrachlorophenol
2,3,5,6-Tetrachlorophenol
Pentachlorophenol
I-Hydroxybenozoate
1-hydroxybenzophenone
Benzophenone-1
Benzophenone-2
Benzophenone-3
Benzophenone-6
Benzophenone-8
Benzyl paraben
Ethyl paraben
leptaparaben
Hydroxy-ethyl paraben
Hydroxy-methyl paraben
Methyl paraben
n-Butyl paraben
n-Propyl paraben
Friclocarban
Friclosan

Pesticides
Azoxystrobin
Cyprodinil
Metalaxyl
Metribuzin
Propiconazole
Pyrimethanil
Tebuconazole
Tetraconazole
6-Cloronicotinic acid
Acetamiprid
Atrazine
Cynauric Acid
Ammelide
Ammeline
Clothianidin
Dinotefuran
Flonicamid
Imidacloprid
Imidaclotiz
N-desmethyl thiamethoxam
N-desmethyl-acetamiprid
Nitenpyram
Sulfoxaflor
Thiacloprid-amide
Thiamethoxam

Alternate Plasticizers
mono-Ethyl phthalate
mono-Butyl phthalate
mono-Benzyl phthalate
mono-(2-Ethylhexyl) phthalate
mono-(2-Ethyl-5-hydroxyhexyl) phthalate
mono-(2-Ethyl-5-oxohexyl) phthalate
mono-Carboxy-iso-octyl phthalate
mono-Carboxy-iso-nonyl phthalate
mono-Ethyl terephthalate
mono-Tert-butyl terephthalate
mono-Benzyl- terephthalate
mono-2(Ethyl hexyl) terephthalate

Assessing novel chemical exposures in ECHO


Develop and demonstrate feasibility of a method for multiple chemical extraction and measurement

Conduct a pilot study to measure novel chemicals in urine collected from pregnant women

Pilot study measuring novel chemicals among 175 pregnant women from 9 ECHO cohorts

Cohort	Location	Enrollment
New Hampshire Birth Cohort Study	NH	2009-present
Fair Start	NY	2013-present
Rochester	NY	2016-present
Atlanta ECHO Cohort of Emory	GA	2014-present
Illinois Kids Development Study	IL	2013-present
MARBLES	CA	2006-present
Chemicals in our Bodies	CA	2014-present
MADRES	CA	2016-present
ECHO in Puerto Rico	PR	2011-present

Includes women from across the U.S. to capture geographic, temporal, and sociodemographic diversity

Assessing novel chemical exposures in ECHO

Develop and demonstrate feasibility of a method for multiple chemical extraction and measurement

Conduct a pilot study to measure novel chemicals in urine collected from pregnant women

Assess associations of prenatal novel chemical exposures with birth outcomes among >7500 children

Assessing novel chemical exposures in ECHO

Develop and demonstrate feasibility of a method for multiple chemical extraction and measurement

Conduct a pilot study to measure novel chemicals in urine collected from pregnant women

Assess associations of prenatal novel chemical exposures with birth outcomes among >7500 children

Perform future studies evaluating associations of novel chemicals with additional child health outcomes

Action and policy implications

- First study to assess exposures or health effects for majority of selected chemicals
- Chemical exposures can be reduced through a variety of programs, policies, and practices to protect children's health

EXPOSURE REDUCTION STRATEGIES

Individual behaviors

Ì∎.

Household maintenance and purchasing

Consumer advocacy and corporate responsibility

Regulatory action via state/federal policies

Zota et al. J Epidemiol Community Health 2017

Acknowledgements

- Tracey Woodruff, Edo Pellizzari, Deborah Bennett, Kurunthachalam Kannan, Rebecca Boyles, Paloma Beamer, Aolin Wang, Yeyi Zhu, Emily Barrett, Tracy Bastain, Carrie Breton, Karl Brosch, Anne Dunlop, Shohreh Farzan, Julie Herbstman, Margaret Karagas, Jordan Kuiper, Carmen Marsit, John Meeker, Rachel Morello-Frosch, Tom O'Connor, Megan Romano, Susan Schantz, Rebecca Schmidt, Deborah Watkins
- Members of ECHO's Chemical Exposures Working Group
- ECHO Study participants

Funding

Office of The Director, National Institutes of Health (Award Number 5U24OD023382). This content does not necessarily represent the official views of the National Institutes of Health.

